Binding Sites in the Active Center of Glutamic-Aspartic Transaminase

Combination of substrates or inhibitors with glutamicaspartic transaminase can be studied by measuring their effectiveness as substrates or inhibitors in transamination and also by their effects on the absorption spectrum of the enzyme1. Previous studies with keto substrates and dicarboxylic acid analog inhibitors 2,8 have shown that for binding to the active center of transaminase a compound should have two carboxyl groups in cis position separated by more than one and less than five carbon atoms, Amino substrates also react with the enzyme and change its spectrum⁴. In the present investigation we have measured the ability of amino compound analogs of amino substrates to act as substrates or inhibitors of the transamination reaction. At the same time their effects on the enzyme spectrum were measured. An attempt was then made to correlate chemical structure with reactivity in the transaminase system. Transaminase activity was measured by the determination of the C14-glutamate formed in 1 h at 37° after addition of C¹⁴-α-ketoglutarate to a solution of aspartate and enzyme. The C14-glutamate formed was measured by its radioactivity and the intensity of its color with ninhydrin after separation of the reaction mix-

In column I is shown the transamination of the analogs with C¹⁴-α-ketoglutarate as measured by C¹⁴-glutamate formed; in column II, their effect on the transaminase spectrum; and in column III, their behavior as inhibitors.

Amino acid	C ¹⁴ - glutamate formed (µmoles)	Increase in absorption (333 m μ)	Inhibition of transaminase %
L-aspartate	0.31	0.320	
L-asparagine	0.02	0.020	20
Erythro-DL-β-			
hydroxyaspartate	0.42	b	90
Threo-DL-β-			
hydroxyaspartate	0.02	0.090	10
α-methyl-DL-aspartate		b	50
β -methylaspartate	0.41	0.120	40
β - β -dimethylaspartate	-	_	_
Glycyl-L-aspartate	_	_	_
L-glutamate	0.34	0.390	70
α-methyl-DL-glutamate		_	
L-isoglutamine	-	_	
Glycyl-L-glutamate	_	_	_
L-cysteine sulfinate	0.72	1.100	95
L-cysteate	0.18	0.280	40
α-Aminomalonate	_	**	_
L-α-aminobutyrate	_	_	_
L-α-aminoadipate	0.22	0.270	18
DL-α-aminopimelate	0.01	0.180	5

^a Transamination reaction was studied in a solution of 0.3 ml 0.05 M Tris buffer, pH 8.5, containing 1 μ mole C¹⁴- α -ketoglutarate, 2 μ moles of the corresponding amino compound and 10 μ g of transaminase. After incubation for 1 h at 37°, the system was analyzed as described in the text. – Inhibition of transamination was studied by adding 100 μ moles of the corresponding amino compound to the usual transamination system⁵. – The effect on the transaminase spectrum was studied in an enzyme solution (30 mg protein/ml) in 0.02 M phosphate buffer, pH 5.5. The final concentration of the amino compound was 1 · 10⁻²M. ^b For erythro-DL- β -hydroxyaspartate there is a sharp maximum at 492 m μ , while for α -methyl-DL-aspartate this maximum is at 430 m μ .

ture by paper electrophoresis (1000 V, 80 mA). Radioactivity was measured by scanning the paper strip with a low background autoscanner, Model 880 (Vanguard Instrument Company).

Certain conclusions relating chemical structure of amino compounds to their effectiveness as substrates or inhibitors of the transamination reaction and to their influence on the enzyme spectrum can be drawn from the Table. The size of the molecule is critical for all effects and is optimal for four to five carbon atoms. Aminomalonate is neither a substrate nor inhibitor nor does it influence the enzyme spectrum. At the opposite extreme, α-aminopimelate is a very poor substrate and inhibitor and has a small effect on the spectrum. α-Aminoadipate is a fair substrate, a good inhibitor, and is fairly active in producing a spectral change. The indispensable role played by the two carboxyl groups of aspartate or glutamate or other analogs can be seen from studies made with derivatives such as asparagine, isoglutamine, αaminobutyrate and aspartic acid diethylester, which are not substrates and do not influence the enzyme spectrum (Table). Any group with an acidity equivalent to a carboxyl group functions as well as a carboxyl group (Lcysteine sulfinate and L-cysteate, Table).

It appears that an amino substrate binds to the active center by its two carboxyl groups. These should be separated by more than one and less than five carbon atoms (three seems to be optimal). In addition, amino substrates should have available for binding: (1) hydrogen of the amino group (negative results for binding and inhibition by glycyl-L-aspartate and glycyl-L-glutamate, Table); (2) hydrogen in the α -position (failure of α -methyl aspartate and α -methyl glutamate to act as substrates); and (3) hydrogen in the β -position (difference in behavior of the derivatives of β -hydroxyaspartate and β -methyl-aspartate and β , β -dimethylaspartate). The inhibition of the transamination reaction by these amino substrate analogs suggests that the same sites are involved in the binding of these compounds and of regular substrates.

Résumé. La capacité de plus que vingt des amines composées (analogues aux acides glutamique et aspartique) d'agir comme substrates ou inhibiteurs de la transamination a été étudiée par l'emploi d'acide C¹⁴-α-kétoglutarique. La comparaison de la structure chimique des amines composées avec leur réactivité comme substrates ou inhibiteurs, a fourni des données sur la specificité de la transaminase.

A. E. Evangelopoulos and I. W. Sizer

Division of Biochemistry, Department of Biology, Massachusetts Institute of Technology, Cambridge (Mass. USA), May 31, 1965.

W. T. JENKINS, D. A. YPHANTIS, and I. W. SIZER, J. biol. Chem. 234, 51 (1959).

I. W. Sizer and W. T. Jenkins, IUB Symposium on Pyridoxal Catalysis, Rome (Pergamon Press, New York 1963), p. 123.

³ A. E. Evangelopoulos and I. W. Sizer, Proc. nat. Acad. Sci., US 49, 638 (1963).

⁴ H. Lis, P. Fasella, C. Turano, and P. Vecchini, Biochim. biophys. Acta 45, 529 (1960).

⁵ P. S. CAMARATA and P. P. COHEN, J. biol. Chem. 193, 45 (1951).